快捷导航   郑州中考政策指南   2015郑州中考大事记   历年中考分数线   热门中考资讯   中职中专招生   历年中考真题及答案   历年中考作文大全   重点高中   返回首页

您现在的位置:中考郑州站 > 中招备考 > 中考复习 > 正文

你不知道的那些中考数学解题策略

来源:家长帮社区    作者:万海归墟    2015-09-11 13:39:51

标签:中考数学 答题技巧说两句

  (1)认真分析问题,找解题准切入点

  由于数学问题纷繁复杂,学生容易受定势思维的影响,这样就会响解题思路造成很大的影响。为此,这时教师要给予学生正确指导,帮助学生进行思路的调整, 对题目进行重新认真的分析,将切入点找准后,问题就能游刃而解了。例如:已知:AB=DC,AC=DB。求证:∠A=∠D。

  此题是一道比较经典的证明全等的题型,主要是对学生对已知条件整合能力和观察识图能力的锻炼。然而,从图形的直观角度来证明∠AOC=∠DOB,这样 的思路只会落入题目所设下的陷阱。为此,在对此题的审题时,教师要引导学生注意将题目已知的两个条件充分结合起来考虑,提醒学生可以适当添加一定的辅助 线。

  (2)发挥想象力,借助面积出奇制胜

  面积问题是数学中常出现的问题,在面积定义及相关规律中,蕴含着深刻的数学思想,如果学生能充分了解其中的韵味,能够熟练的掌握其中的数学论证思维, 就有可能在其他数学问题中借助面积,出奇制胜顺利实现解题。由于几何图形的面积与线段、角、弧等有密切的联系,所以用面积法不但可证各种几何图形面积的等 量关系,还可证某些线段相等、线段不等、角的相等以及比例式等多种类型的几何题。例1、若E、F分别是矩形ABCD边AB、CD的中点,且矩形EFDA与 矩形ABCD相似,则矩形ABCD的宽与长之比为(    )  (A)1∶2、(B)2∶1、(C)1∶2、(D)2∶1

  由上题已知信息可知,矩形ABCD的宽AD与AB的比,就是矩形EFDA与矩形ABCD的相似比。解:设矩形EFDA与矩形ABCD的相似比为k。因 为E、F分别是矩形ABCD的中点,所以S矩形ABCD=2S矩形EFDA。所以S矩形EFDA∶S矩形ABCD=k2。所以k=1∶2。即矩形ABCD 的宽与长之比为1∶2;故选(C)。

  此题利用了“相似多边形面积的比等于相似比平方”这一性质,巧妙解决相似矩形中的长与宽比的问题。事实上,借助面积,形成解题思路的过程,就是学生思维转换的过程。

  (3)巧取特殊值,以简代繁

  初中数学虽然是基础数学,但是这并不意味着就没有难度,特别是在素质教育下,从培养学生综合素质能力的角度出发,初中数学越来越重视数学思维的培养, 因此在很多数学问题的设置上,都进行了相当难度的调整,使得数学问题显得较为繁杂,单一的思维或者解题方式,在有些题目面前会显得较为艰难。如有些数学问 题是在一定的范围内研究它的性质,如果从所有的值去逐一考虑,那么问题将不胜其繁甚至陷入困境。在这种情况下,避开常规解法,跳出既定数学思维,就成了解 题的关键。

  例2、分解因式:x2+2xy-8y2+2x+14y-3。

  思路分析:本题是二元多项式,从常规思路进行解题也未尝不可,但是从锻炼学生思维能力的角度出发,教师可以在立足常规解法的基础上,引导学生进行其他 方面解题思路的探索。如从巧取特值的角度出发,把其中的一个未知数设为0,则可以暂时隐去这个未知数,而就另一个未知数的式子来分解因式,达到化二元为一 元的目的。

  解:令y=0,得x2+2x-3=(x+3)(x-1);令x=0,得:-8y2+14y-3=(-2y+3)(4y-1)。当把两次分解的一次项的系数1、1;-2、4。可知,1×4+(-2)×1正好等于原式中xy项的系数。因此,综合起来有:x2+2xy-8y2+2x+14y-3=(x-2y+3)(x+4y-1)。

  其实,用特殊值法,也叫取零法。这种方法在因式分解中可以发挥很大的作用,帮助学生找到其他的解题思路。一般来说其步骤是:A、把多项式中的一个字母 设为0所得的结果分解因式,B、把多项中的另一个字母设为0所得的结果分解因式,C、把上两步分解的结果综合起来,得出原多项式的分解结果。但要注意:两 次分解的一次因式的常数项必须相等,如本题中,x+3的3和-2y+3的3相等,x-1的-1和4y-1的-1相等。否则,在综合这两步的结果时就无所适 从了。

  (4)巧妙转换,过渡求解法

  在解数学题时,即要对已知的条件进行全面分析,还要善于将题目中的隐性条件挖掘出来,将数学中各知识之间的联系巧妙的运用起来,用全面、全新的视角来解决问题。

  例如:已知:AB为半圆的直径,其长度为30cm,点C、D是该半圆的三等分点,求弦AC、AD与弧CD所围成的图形的面积。

  本题需要解出的是一个不规则图形的面积,可能大多数同学的思维就是将CD连结起来,将其转变为一个角形和弓形,两者面积之和就为该题需要解决的问题。 这时,教师就要引导学生学会对半径这一已知条件加以利用,帮助其将另外两条OC、OD辅助线连结起来,将题目要求解的不规则图形的面积,转化成求扇形 OCD的面积,这样该题的解题思维就能一目了然了。

  综上所述,初中数学解题存在很强的灵活性。有的数学题不只一种解法,而有多种解法,有的数学题用常规方法解决不了,要用特殊方法。因此,解数学题要注 意它的灵活性和技巧性。解题技巧在升学考试中至关重要,不能忽视。初中数学教师要注意对解题技巧的钻研,并鼓励学生发散思维,寻找解题技巧,提高解题效 率,增强学习数学的能力。

  相关推荐:过来人分享中考好成绩的七字要诀

   欢迎使用手机、平板等移动设备访问郑州中考网,2017中考一路陪伴同行!>>点击查看

  • 欢迎扫描二维码
    关注中考网微信
    ID:zhongkao_com

  • 欢迎扫描二维码
    关注奥数网微信
    ID:aoshu_2003

热门推荐

热门专题

  • 2016年郑州中考网特别策划
  • 2016郑州中考现场特别报道
  • 2016郑州中考作文题目及范文

[中考真题]2016郑州中考真题及答案

[中考分数线]2016郑州中考录取分数线

中考报考

中考报名

中招计划

志愿填报

中考体育

中考签约

中考分数线

中考备考

中考真题

中考一模

中考二模

中考作文

中考复习

中考说明

杯赛竞赛

华杯赛试题

希望杯试题

世奥赛试题

数学联合竞赛试题

重点高中

河南省实验中学

郑州市第七中学

郑州市第九中学

郑州第一零六中

郑州市一零一中

郑州市第十六中学

初中试题库

中考真题

二模试题

单元测试

一模试题

中考压轴题

工具大全

中考报考时间

中考分数线

中考成绩查询

中考满分作文

中考状元

中考志愿填报

关注中考网微信,将中考资讯一网打尽!! 收藏 建议 顶部